
What exactly is the Rational Unified Process, or RUP as many call it now? I can give several answers to this
question, from different perspectives:

 What is the purpose of the RUP? It is a software engineering process, aimed at guiding software
development organizations in their endeavors. 

 How is the RUP designed and delivered? It is a process product, designed like any software product,
and integrated with the Rational suites of software development tools. 

 What is the structure of the RUP; how is it organized internally? The RUP has a very well-defined
and regular structure, using an object-oriented approach for its description. 

 How would an organization proceed to adopt the RUP? The RUP is a process framework that allows
a software development organization to tailor or extend the RUP to match its specific needs. 

 What will I find in the RUP? It captures many of modern software development's best practices
harvested by Rational over the years, in a form suitable for a wide range of projects and organizations.

The RUP Is a Software Engineering Process

Many organizations have slowly become aware of just how important a welldefined and welldocumented software development process is to
the success of their software projects. The development of the CMM (Capability Maturity Model) by the Software Engineering Institute (SEI)
has become a beacon, a standard to which many organizations look, when they aim at attaining level 2, 3, or higher. Over the years, these
organizations have collected their knowledge and shared it with their developers. This collective knowhow often grows out of design
methods, published textbooks, training programs, and small howto notes amassed internally over several projects. Unfortunately, in practice,
these internally developed processes often end up gathering dust in nice binders on a developer's shelf  rarely updated, rapidly becoming
obsolete, and almost never followed. Other software development organizations have no process at all, and need a starting point, an initial
process to jumpstart them on the path of faster development of better quality software products.

The RUP can help both kinds of organizations, by providing them with a mature, rigorous, and flexible software engineering process.

The RUP Is a Process Product

The RUP is not just a book, a development method developed and published once and for all in paper form. "Software processes are software,
too," wrote Lee Osterweil, Professor of Computer Science at the University of Massachusetts. In contrast with the dusty binder approach, the
Rational Unified Process is designed, developed, delivered, and maintained like any software tool. The Rational Unified Process shares many
characteristics with software products:

 Like a software product, the Rational Unified Process is designed and documented using the Unified Modeling Language (UML).
An underlying object model, the Unified Software Process Model (USPM) provides a very coherent backbone to the process. 

 It is delivered online using Web technology, not in books or binders, so it's literally at the developers' fingertips. 

 Regular software upgrades are released by Rational Software approximately twice a year. So the process is never obsolete, and its
users benefit from the latest development. All team members access the same version of the process. 

 Because it is modular and in electronic form, it can be tailored and configured to suit the specific needs of a development
organization, something that's hard to do with a book or a binder. 

 It is integrated with the many software development tools in the Rational Suites, so developers can access process guidance within
the tool they are using. 

Figure 1 shows a page from the RUP.



Figure 1: A Page from the RUP

The Architecture of the RUP

The process itself has been designed using techniques similar to those for software design. In particular, it has an
underlying object-oriented model, using UML. Figure 2 shows the overall architecture of the Rational Unified
Process. The process has two structures or, if you prefer, two dimensions:

 The horizontal dimension represents time and shows the lifecycle aspects of the process as it unfolds. 
 The vertical dimension represents core process disciplines (or workflows), which logically group software

engineering activities by their nature. 

The first (horizontal) dimension represents the dynamic aspect of the process expressed in terms of cycles,
phases, iterations, and milestones. In the RUP, a software product is designed and built in a succession of
incremental iterations. This allows testing and validation of design ideas, as well as risk mitigation, to occur earlier
in the lifecycle. The second (vertical) dimension represents the static aspect of the process described in terms of
process components: activities, disciplines, artifacts, and roles.

Figure 2 - Two Dimensions of the RUP

The RUP Is a Process Framework

The Rational Unified Process is also a process framework that can be adapted and extended to suit the needs of
an adopting organization. It is general and comprehensive enough to be used "as is," i.e., out-of-the-box, by
many small-to-medium software development organizations, especially those that do not have a very strong
process culture. But the adopting organization can also modify, adjust, and expand the Rational Unified Process to
accommodate the specific needs, characteristics, constraints, and history of its organization, culture, and domain.
A process should not be followed blindly, generating useless work and producing artifacts that are of little added
value. Instead, the process must be made as lean as possible while still fulfilling its mission to help developers
rapidly produce predictably high-quality software. The best practices of the adopting organization, along with its
specific rules and procedures, should complement the process.

The process elements that are likely to be modified, customized, added, or suppressed include artifacts, activities,
workers, and workflows as well as guidelines and artifact templates. The Rational Unified Process itself contains
the roles, activities, artifacts, guidelines, and examples necessary for its modification and configuration by the
adopting organization. Moreover, these activities are also supported by the Rational Process Workbench™ (RPW)
tool. This new tool uses a UML model of the Rational Unified Process to support process design and authoring
activities, and the production of company-specific or project-specific RUP variants, called development cases.

Starting in 2000, the RUP contains several variants, or pre-packaged development cases for different types of
software development organizations.

The RUP Captures Software Development Best Practices

The Rational Unified Process captures many of modern software development's best practices in a form suitable
for a wide range of projects and organizations:

 Develop software iteratively. 
 Manage requirements. 
 Use component-based architectures. 
 Visually model software. 
 Continuously verify software quality. 



 Control changes to software.

1. Develop Software Iteratively 

Most software teams still use a waterfall process for development projects, completing in strict sequence the
phases of requirement analysis, design, implementation/integration, and test. This inefficient approach idles key
team members for extended periods and defers testing until the end of the project lifecycle, when problems tend
to be tough and expensive to resolve, and pose a serious threat to release deadlines. By contrast, RUP represents
an iterative approach that is superior for a number of reasons:

 It lets you take into account changing requirements. The truth is that requirements usually change.
Requirements change and "requirements creep" -- the addition of requirements that are unnecessary
and/or not customer-driven as a project progresses -- have always been primary sources of project
trouble, leading to late delivery, missed schedules, dissatisfied customers, and frustrated developers. 

 Integration is not one "big bang" at the end; instead, elements are integrated progressively -- almost
continuously. With RUP, what used to be a lengthy time of uncertainty and pain -- taking up to 40% of
the total effort at the end of a project -- is broken down into six to nine smaller integrations involving
fewer elements. 

 Risks are usually discovered or addressed during integration. With the iterative approach, you can
mitigate risks earlier. As you unroll the early iterations, you test all process components, exercising many
aspects of the project, such as tools, off-the-shelf software, people skills, and so on. You can quickly see
whether perceived risks prove to be real and also uncover new, unsuspected risks when they are easier
and less costly to address. 

 Iterative development provides management with a means of making tactical changes to the product --
to compete with existing products, for example. It allows you to release a product early with reduced
functionality to counter a move by a competitor, or to adopt another vendor for a given technology. 

 Iteration facilitates reuse; it is easier to identify common parts as they are partially designed or
implemented than to recognize them during planning. Design reviews in early iterations allow architects
to spot potential opportunities for reuse, and then develop and mature common code for these
opportunities in subsequent iterations. 

 When you can correct errors over several iterations, the result is a more robust architecture. As the
product moves beyond inception into elaboration, flaws are detected even in early iterations rather than
during a massive testing phase at the end. Performance bottlenecks are discovered at a time when they
can still be addressed, instead of creating panic on the eve of delivery. 

 Developers can learn along the way, and their various abilities and specialties are more fully employed
during the entire lifecycle. Testers start testing early, technical writers begin writing early, and so on. In a
non-iterative development, the same people would be waiting around to begin their work, making plan
after plan but not making any concrete progress. What can a tester test when the product consists of only
three feet of design documentation on a shelf? In addition, training needs, or the need for additional
people, are spotted early, during assessment reviews. 

 The development process itself can be improved and refined along the way. The assessment at the end of
an iteration not only looks at the status of the project from a product or schedule perspective, but also
analyzes what should be changed in the organization and in the process to make it perform better in the
next iteration.

Project managers often resist the iterative approach, seeing it as a kind of endless and uncontrolled hacking. In
the Rational Unified Process, the iterative approach is very controlled; the number, duration, and objectives of
iterations are carefully planned, and the tasks and responsibilities of participants are well defined. In addition,
objective measures of progress are captured. Some reworking takes place from one iteration to the next, but this,
too, is carefully controlled.

2. Manage Requirements

Requirements management is a systematic approach to eliciting, organizing, communicating, and managing the
changing requirements of a software-intensive system or application.

The benefits of effective requirements management are numerous:

 Better control of complex projects. This includes greater understanding of the intended system behavior
as well as prevention of requirements creep. 

 Improved software quality and customer satisfaction. The fundamental measure of quality is whether a
system does what it is supposed to do. With the Rational Unified Process, this can be more easily
assessed because all stakeholders have a common understanding of what must be built and tested. 

 Reduced project costs and delays. Fixing errors in requirements is very expensive. With effective
requirements management, you can decrease these errors early in the development, thereby cutting



project costs and preventing delays. 
 Improved team communication. Requirements management facilitates the involvement of users early in

the process, helping to ensure that the application meets their needs. Well-managed requirements build a
common understanding of the project needs and commitments among the stakeholders: users,
customers, management, designers, and testers. 

It is often difficult to look at a traditional object-oriented system model and tell how the system does what it is
supposed to do. This difficulty stems from the lack of a consistent, visible thread through the system when it
performs certain tasks. In the Rational Unified Process, use cases provide that thread by defining the behavior
performed by a system.

Use cases are not required in object orientation, nor are they a compulsory vehicle in the Rational Unified Process.
Where they are appropriate, however, they provide an important link between system requirements and other
development artifacts, such as design and tests. Other object-oriented methods provide use-case-like
representation but use different names for it, such as scenarios or threads. 

The Rational Unified Process is a use-case-driven approach, which means that the use cases defined for the
system can serve as the foundation for the rest of the development process. Use cases used for capturing
requirements play a major role in several of the process workflows, especially design, test, user-interface design,
and project management. They are also critical to business modeling.

3. Use Component-Based Architecture

Use cases drive the Rational Unified Process throughout the entire lifecycle, but design activities center on
architecture -- either system architecture or, for software-intensive systems, software architecture. The main
focus of early iterations is to produce and validate a software architecture. In the initial development cycle, this
takes the form of an executable architectural prototype that gradually evolves, through subsequent iterations, into
the final system.

The Rational Unified Process provides a methodical, systematic way to design, develop, and validate an
architecture. It offers templates for describing an architecture based on the concept of multiple architectural
views. It provides for the capture of architectural style, design rules, and constraints. The design process
component contains specific activities aimed at identifying architectural constraints and architecturally significant
elements, as well as guidelines on how to make architectural choices. The management process shows how
planning the early iterations takes into account the design of an architecture and the resolution of major technical
risks.

A component can be defined as a nontrivial piece of software: a module, package, or subsystem that fulfills a clear
function, has a clear boundary, and can be integrated into a well-defined architecture. It is the physical realization
of an abstraction in your design. Component-based development can proceed in several ways: 

 In defining a modular architecture, you identify, isolate, design, develop, and test well-formed
components. These components can be individually tested and gradually integrated to form the whole
system. 

 Furthermore, some of these components can be developed to be reusable, especially components that
provide solutions to a wide range of common problems. Reusable components are typically larger than
mere collections of utilities or class libraries. They form the basis of reuse within an organization,
increasing overall software productivity and quality. 

 More recently, the advent of commercially successful infrastructures supporting the concept of software
components -- such as Common Object Request Broker Architecture (CORBA), the Internet, ActiveX, and
JavaBeans -- has launched a whole industry of off-the-shelf components for various domains, allowing
developers to buy and integrate components rather than develop them in-house. 

The first point above exploits the old concepts of modularity and encapsulation, bringing the concepts underlying
object-oriented technology a step further. The final two points shift software development from programming
software (one line at a time) to composing software (by assembling components).

The Rational Unified Process supports component-based development in several ways.

 The iterative approach allows developers to progressively identify components and decide which ones to
develop, which ones to reuse, and which ones to buy. 

 The focus on software architecture allows you to articulate the structure. The architecture enumerates the
components and the ways they integrate, as well as the fundamental mechanisms and patterns by which
they interact. 

 Concepts such as packages, subsystems, and layers are used during analysis and design to organize
components and specify interfaces. 

 Testing is organized around single components first and then is gradually expanded to include larger sets
of integrated components.



4. Visually Model Software

Models are simplifications of reality; they help us to understand and shape both a problem and its solution, and to
comprehend large, complex systems that we could not otherwise understand as a whole. A large part of the
Rational Unified Process is about developing and maintaining models of the system under development.

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system. It gives you a standard means of writing the system's
blueprints, covering conceptual items such as business processes and system functions, as well as concrete items
such as classes written in a specific programming language, database schemas, and reusable software
components. While it provides the vocabulary to express various models, the UML does not tell you how to
develop software. That is why Rational developed the Rational Unified Process, a guide to the effective use of the
UML for modeling. It describes the models you need, why you need them, and how to construct them. RUP2000
uses UML version 1.4.

5. Continuously Verify Quality 

Often people ask why there is no worker in charge of quality in the Rational Unified Process. The answer is that
quality is not added to a product by a few people. Instead, quality is the responsibility of every member of the
development organization. In software development, our concern about quality is focused on two areas: product
quality and process quality. 

 Product quality -- The quality of the principal product being produced (the software or system) and all
the elements it comprises (for example, components, subsystems, architecture, and so on). 

 Process quality -- The degree to which an acceptable process (including measurements and criteria for
quality) was implemented and adhered to during the manufacturing of the product. Additionally, process
quality is concerned with the quality of the artifacts (such as iteration plans, test plans, use-case
realizations, design model, and so on) produced in support of the principal product. 

6. Control Changes to Software

Particularly in an iterative development, many work products are often modified. By allowing flexibility in the
planning and execution of the development and by allowing the requirements to evolve, iterative development
emphasizes the vital issues of keeping track of changes and ensuring that everything and everyone is in sync.
Focused closely on the needs of the development organization, change management is a systematic approach to
managing changes in requirements, design, and implementation. It also covers the important activities of keeping
track of defects, misunderstandings, and project commitments as well as associating these activities with specific
artifacts and releases. Change management is tied to configuration management and measurements.

Who Is Using the Rational Unified Process? 

More than a thousand companies were using the Rational Unified Process at the end of 2000. They use it in
various application domains, for both large and small projects. This shows the versatility and wide applicability of
the Rational Unified Process. Here are examples of the various industry sectors around the world that use it:

 Telecommunications 
 Transportation, aerospace, defense 
 Manufacturing 
 Financial services 
 Systems integrators

More than 50% of these users are either using the Rational Unified Process for e-business or planning to do so in
the near future. This is a sign of change in our industry: as the time-to-market pressure increases, as well as the
demand for quality, companies are looking at learning from others' experience, and are ready to adopt proven
best practices. The way these organizations use the Rational Unified Process also varies greatly: some use it very
formally; they have evolved their own company process from the Rational Unified Process, which they follow with
great care. Other organizations have a more informal usage, taking the Rational Unified Process as a repository of
advice, templates, and guidance that they use as they go along -- as a sort of "electronic coach" on software
engineering. By working with these customers, observing how they use the RUP, listening to their feedback,
looking at the additions they make to the process to address specific concerns, the RUP development team at
Rational continues to refine the process for the benefit of all.

 


